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Abstract
Purpose Computer-aidedMRI analysis is helpful for early detection ofAlzheimer’s disease(AD). Recently, 3D convolutional
neural networks(CNN) are widely used to analyse MRI images. However, 3D CNN requires huge memory cost. In this paper,
we introduce cascaded CNN and long and short-term memory (LSTM) networks. We also use knowledge distillation to
improve the accuracy of the model using small medical image dataset.
Methods We propose a cascade structure, CNN-LSTM. CNN is used as the function of feature extraction, and LSTM is
used as the classifier. In this way, the correlation between different slices can be considered and the calculation cost caused
by 3D data can be reduced. To overcome the problem of limited image training data, transfer learning is a more reasonable
way of feature extraction. We use the knowledge distillation algorithm to improve the performance of student models for AD
diagnosis through a powerful teacher model to guide the work of student models.
Results The accuracy of the proposed model is improved using knowledge distillation. The results show that the accuracy
of the student models reached 85.96% after the guidance of the teacher models, an increase by 3.83%.
Conclusion We propose cascaded CNN-LSTM to classify 3D ADNI data, and use knowledge distillation to improve the
model accuracy when trained with small size dataset. It can process 3D data efficiently as well as reduce the computational
cost.

Keywords Alzheimer disease · MRI · Small samples · Deep learning · Classification · Knowledge distillation

Introduction

Alzheimer Disease (AD) is a progressive neurodegenerative
disease characterized by cognitive decline and memory loss.
This disease causes irreversible damage to the brain and even-
tually leads to the death of individuals due to complete brain
failure. It is also one of the leading causes of death in the aging
populationwhich affects nearly 50million people worldwide

Yiru Li and Jiachen Zhang have contributed equally to this work.

B Jianxu Luo
jxluo@ecust.edu.cn

Yiru Li
837806012@qq.com

Jiachen Zhang
y30190768@mail.ecust.edu.cn

1 School of Information Science and Engineering, East China
University of Science and Technology, Shanghai 200237,
China

[1], and the socio-economic cost of this is enormous. Due
to the irreversibility of AD, early diagnosis plays a critical
role in helping to mitigate disease progression. Currently,
researchers are using advanced neuroimaging techniques,
such as magnetic resonance imaging (MRI), to identify AD.
MRI can produce 3D images, which have millions of vox-
els. Figure 1 shows three slices of patients’ scans in different
directions.

In medical imaging diagnosis of Alzheimer’s disease,
lesions are mainly found in MRI images, which are often
judged with the help of the physician’s experience. Digital
image processing technology is used to achieve reconstruc-
tion and measurement of the brain, soft tissues and lesions.
With the help of computers, doctors can analyze lesions and
other areas of interest qualitatively and even quantitatively.
AI-enabled medical system can assist doctors and improve
the accuracy and reliability of judging lesions. Deep learning
is the main technical tool.

With the latest advances in deep learning, convolutional
neural networks have good performance in the classification
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Fig. 1 Images of MRI sample slices of participants: three views

of natural images and show great potential in medical image
diagnosis. Various CNN-based techniques have been pro-
posed for the classification and segmentation of Alzheimer’s
disease. The classification of AD can be done by study-
ing its underlying features. Thus, feature extraction has an
important role in the classification of medical images. Earlier
studies on MRI images analysis were performed by extract-
ing the high-level features then going through support vector
machine (SVM) [2] and random forest [3] for classification.
Manu et al. [4] first used convolutional neural networks for
feature extraction and then connected fully connected layers
to classify Alzheimer’s disease. Ali et al. [5] processed 3D
data to obtain slices in three directions and then input them
to CNN. Xin et al. [6] transformed 3D MRI image volumes
into 2D images as input to CNN. Marcia et al. [7] proposed
an intelligent entropy-based technique for selecting training
datasets to get a larger amounts of information in a small
sample. Hao et al. [8], used transfer learning combined with
active learning to classify brain tumor MRI images. Korolev
et al. [9] took 3D medical image data as input and used
a 3D convolutional neural network for feature extraction.
Khvostikov et al. [10] combined multimodal information
such as sMRI and PET and proposed a data augmentation
method to balance categories of different sizes, enriching the
input information of the 3D model and thus improving the
impact of the model on the classification results. Huang [11]
proposed a multimodal diagnostic system based on T1-MRI

and FDG-PET, and only hippocampal areas were used as
ROIs.

Due to the volumetric nature that MRI images have, there
is a consensus among researchers that slice to slice corre-
lation information should be considered. However, if deep
learning 3D models are used, the computational cost of 3D
models is higher and the training time is longer due to the
high dimensionality of the input. Using a cascade structure
enables the network to extract features in each 2D image and
then learn slice-to-slice features.

Another problem is that most medical datasets are rela-
tively small at present, with insufficient sample data. When
the training sample is not enough, the network does not learn
more advanced features, then the model tends to overfit. To
overcome the problem of limited image training data, trans-
fer learning is a reasonable way of feature extraction. Our
work is mainly as follows:

(1) We propose a cascade structure, CNN-LSTM. CNN is
used as the function of feature extraction, and LSTM is
used as the classifier. In this way, the correlation between
different slices can be considered and the calculation cost
caused by 3D data can be reduced.

(2) We use the knowledge distillation algorithm to improve
the performance of student models for AD diagnosis
through a powerful teacher model to guide the work of
student models.

Related work

In recent years, with increasing computational power, deep
learning methods have developed extremely rapidly. Among
them, convolutional neural networks are widely used in the
field of medical imaging analysis since it can automatically
learn the feature representation of an image. In order to get a
powerful CNNmodel, a large number of samples are needed
for training. However, labeled medical images are usually
hard to get , resulting a small data set for CNN training.
Transfer learning [12] is an efficient way to deal with small
samples. It is the process of transferring the parameters of
a trained model (pre-trained model) to a new model to help
training the new model. Considering that most of the data or
tasks are correlated, transfer learning allows us to share the
learned model parameters to the new model through trans-
fer to speed up and optimize the learning efficiency of the
model, without learning from scratch as most networks do. It
can take advantage of the similarity between the source and
target domains to have a good classification effect despite
using a small number of samples in the target’s task. Pan
and Yang [13] showed that the more similar the data distri-
bution between the source and target domains, the closer the
learned information is, the better the migration effect will
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Fig. 2 Information from soft targets and hard targets

be. One such method, knowledge distillation, is a combina-
tion of transfer learning and model compression, which is a
way to transfer dark knowledge by teaching an untrained stu-
dent model by a pre-trained teacher model so that the student
model also performs well under that task.

Teacher models used softmax to output the probability Si
belong to each class and the logit of knowledge distillation
represented the probability prediction value of model output
for each class, see Eq. (1)

Si = exp(zi )
∑

j exp(z j )
qi = exp(zi/T )

∑
j exp(z j/T )

(1)

where qi is a soft label for student network learning, zi is the
output probability for each class and T is the hyperparameter
representing the distillation temperature. When T is taken as
1, the equation degenerates into softmax, and the probability
of each class is output according to logit; when T is close to
0, then it approximates one-hot encoding; if T is lager, the
distribution of the output results will be flatter, which serves
to retain similar information.

Suppose we have a teacher model with strong general-
ization ability, we can use the teacher model distillation to
train the student model directly to learn the generalization
ability of the teacher model. A straightforward approach is
to use the probabilities of the output categories of the “Soft-
max” layer as “soft labels”. The advantage of this is that
in addition to the output of positive examples, the negative
labels also carry a lot of information. In contrast to the tra-
ditional “hard labels”, all one-hot negative labels are treated
uniformly. Figure 2 illustrates the probability of getting dif-
ferent labels after softening the hard labels, which enriches
the information brought by the labels.

The loss function of Teacher-Student Network consists of
two parts as Eq. (2) :

Loss = (1 − α) ∗ losshard + α ∗ losssoft (2)

losshard = −
N∑

j

cTj log(q
T
j ) (3)

losssoft =
N∑

j

pTj log

(
pTj
qTj

)

(4)

where losshard represents the cross entropy of real labels
and student model predictions. Using real labels can effec-
tively reduce the possibility of errors being propagated to
student models. losssoft represents the relative entropy of soft
label prediction of teacher and student models. Students are
required to imitate the teacher model’s learning ability as
much as possible. α represents the weight to balance the rela-
tionship between the two. c j is ground truth, q j is the output
of student model and p j is the output of teacher model.

Materials andmethods

In this section, the dataset and the data preprocessing steps
are introduced. Then, the model architecture and it’s super
parameters are discussed.

Dataset

The Alzheimer’s Disease Neuroimaging Initiative (ADNI) is
a longitudinal multicenter study designed to develop clinical,
imaging, genetic, and biochemical biomarkers for the early
detection and follow-up of Alzheimer’s disease. We have
evaluated our systemwithMRI data fromADNI because it is
the largest publicly available dataset onAlzheimer’s Disease.
We use 280 samples with Alzheimer’s disease, 249 samples
with mild cognitive impairment, and 251 cognitively normal
samples from the dataset. All samples were pre-treated with
GradWarp, (a correction of image geometry distortion due
to gradient model), B1 Correction (a correction that uses B1
calibration scans to correct image intensity nonuniformity),
and N3 (a processing is the N3 histogram peak sharpen-
ing algorithm to reduce intensity non-uniformity of images).
To ensure the consistency of the samples, the dimension-
ality of each data was standardized from the original data
dimension to 20*224*224 dimensions. Since hippocampal
volume is a good predictor for classifying AD, the dimen-
sion reduction was made by scaling rather than cropping,
avoiding hippocampi information was lost in the reduced
data.

We selected T2 sequences from 780 samples as the input
sequences. Middle slices are selected from each sample, and
each slice is taken one at a time. As shown in Fig. 3, a total of
20 slices are selected, and the size of each slice is 224*224.
We set the sample with Alzheimer’s disease as Label 0, the
sample with mild cognitive impairment as Label 1, and the
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Fig. 3 An input with volume samples. Take 20 slices in the middle of the whole sample to learn the deep image features

Table 1 Number of samples for specific data distribution

Train (70%) Test (30%) All

AD 196 84 280

MCI 174 75 249

CN 175 76 251

All 545 235 780

Table 2 Statistical distribution of demographic information

Gender Age groups

Male Female 50–60 60–70 70–80 80–90 90–100

AD 137 143 6 30 138 100 6

MCI 108 141 5 58 105 81 0

CN 110 141 0 0 142 109 0

sample with normal cognition as Label 2. Hence, it’s a triple
classificationproblem.Weuse70%of the total as training and
the remaining 30% as testing. The specific data distribution

is shown in Table 1. We show the different classes of gender
and age groups in Table 2.

Model architecture

For classifying 3D-MRI images, our method consists of two
parts, a pre-trained CNN and an LSTM. The overall structure
is sketched in Fig. 4. CNN is used for feature extraction,
while the fully-connected (FC) layer is the final layer of the
CNN, which transforms the extracted features into a vector
of feature sequences. LSTM acts as a classifier.

We use DenseNet [14] and ResNet [15] as the backbone
network for feature extraction. Parameter quantity for differ-
ent models are shown in Table 3.

In the teacher-student network, the teacher model uses the
DenseNet model, which uses densely connected blocks, as
shown in Fig. 5, and each of its layers is connected to the lay-
ers that follow in the forward model. Unlike ResNet, which
is add a skip-connection, DenseNet uses direct connection
of all inputs to the output layer. For each layer, its input then

Fig. 4 Cascade structure of a
CNN-LSTM model
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Table 3 Number of parameters
of the backbone network we
used

Backbone Params.

DenseNet-169 28,682,000

DenseNet-121 7,978,856

ResNet-50 25,557,032

ResNet-18 11,689,512

Fig. 5 Dense Block connection diagram. This layer is connected with
all subsequent layers in a forward mode

includes the output of the previous layer and the input of all
layers before that layer. This connection improves the flow of
information and gradients throughout the network, and each
layer has access to the gradients from the loss function and the
original input signal, making it easier to train the model, and
also enhancing the transfer of features. In addition, another
advantage of DenseNet is that the network is narrower and

has fewer parameters. The growth rate k is a hyperparameter
in the network and usually a smaller value of k (e.g. k=32)
has a better result [14]. The network structure of DenseNet
is shown in Fig. 6.

The student models use the DenseNet and the ResNet,
respectively. The structure of ResNet is shown in Fig. 7a. It
consists of two types of network modules, BasicBlock and
BottlectBlock, as shown in Fig. 7b and c. They have shortcut
connections, which can overcome the gradient disappearance
problem caused by deep learning.

LSTM is a special kind of recurrent neural network (RNN)
that takes sequence data as input and recurses in the direction
of sequence evolution and all nodes are connected in a chain.
It is very effective for data with sequential characteristics,
and it can mine the temporal and semantic information in the
data. LSTM is an extended version of RNN with three gates,
i.e., input gate, output gate, and forgetting gate, as shown in
Fig. 8. It has two layers of hidden layer neural network,where
each layer has 256 nodes. Sequence prediction is performed
by LSTM, which uses these gates to learn long-term depen-
dencies between different slices. The LSTM is also effective
in dealing with the problem of gradients disappearing during
propagation, as it releases some memory that are not helpful

Fig. 6 Structure diagram of DenseNet. It consists of convolutional layer, dense layer and transition layer
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Fig. 7 Network structure of ResNet and residual blocks. a Acts as the backbone network. The right figure shows the two ways of residual blocks.
b Is BasicBlock, which consists of two 3*3 convolution blocks; c Is BottlectBlock, which consists of one 1*1 and two 3*3 convolution blocks

for predictive classification. Its input is a vector of feature
dimensions extracted by the CNN. Each patient slice has a
feature vector. Due to the sequence prediction property of
LSTM, the last feature information learned by the network
will contain information from the shallow layer of the net-
work.

Network and training parameters

Our backbone network uses a fine-tuning learning rate of
0.000015. LSTMuse a learning rate of 0.001. A cosine learn-
ing rate attenuation mechanism is used to update the learning
rate. Adam is used as an optimizer, combining the advantages
of both AdaGrad and RMSProp optimization algorithms.
The random deactivation value is 0.3, and the 300 dimen-
sional feature vector extracted by CNN is used as the input of
LSTM. LSTMhas two hidden layers, each layer has 256 neu-
rons. The model is implemented by PyTorch 3.7 and trained
on NIVIDA RTX 3090. CPU is i9 10980XE.

Fig. 8 Structure diagram of LSTM. Input gate remembers part of the
present information and then sends the part memories to the output gate
together with the present memories. Forgetting gate is to forget part of
the past information. Output gate determines the final output
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Table 4 Results of the accuracy of CNN-LSTM models with different
structures on MRI images

Teacher DenseNet169 82.12%

Student DenseNet121 ResNet18 ResNet50

KD 85.96% 79.57% 75.32%

No-KD 82.13% 71.06% 74.89%

Experimental results and analysis

Result

Our main goal was to investigate the difference between the
performance of studentmodelswith the guidance of a teacher
model, comparing the effect ofmodel size onmodel accuracy
and the effect of having a teacher model for guidance on
model accuracy.

DenseNet169 is chosen as the teacher network and three
different networks, DenseNet121, ResNet50, and ResNet18,
are selected to be student models, respectively. The per-

Fig. 10 Confusionmatrix forDenNet121on the test set after knowledge
distillation

formances of student models with or without knowledge
distillation are shown in Table 4. It can be seen that using the
teacher’s guidance, the accuracy of DenseNet121 increased
by 3.83%, and that of ResNet18 increased by 8.5%, while
ResNet50 increased by 0.43%.

In Fig. 9, we also noted that our attempts at other 2D
slices for view selection (e.g., sagittal, coronal and axial) did
not result in significant differences in test accuracy, as long
as the slices were selected close to the center of the brain.

Fig. 9 Confusion matrix for three different views of MRI. The three confusion matrices are represented as DenseNet169 as the backbone network
and different views as the inputs to the network: a Sagittal view; b Coronal view; c Axial view
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Fig. 11 Confusion matrix of knowledge distillation on test set, with data split by patients

The three accuracy rates are: 82.12, 83.83, 81.70%. We also
tried slices from all three views as three-channel inputs to
the model, and the improvement was little. Performance was
relatively improved with teacher model guidance, but the
performance was still limited. We think it was over-fitting
information from individual patients rather than general dif-
ferences in the different stages of the brain in Alzheimer’s
disease [16].

Analysis

FromTable 4we can see the accuracy of predictive classifica-
tion using DenseNet169 as the teacher network was 82.12%,
while the result of transfer learning usingDenseNet121 as the
student network was 85.96%. The results of the student net-
work are better than the teacher network. We believe it is due
to the small size of parameters of the student model, which
can fit better for small sample set. The fit is better on small
samples, and the process of knowledge distillation enriches
the dark knowledge from supervised learning, which allows
the student model to learn more information to improve the
accuracy of predictive classification. The confusionmatrix of
DenNet121 is shown in Fig. 10. It shows that Label 1 has the
lowest accuracy and is often misclassified into Label 0 and
Label 2. Label 1was considered to be aMCI sample, between
AD and CN, with less distinctive feature. Under the guidance
of the teachermodelDenseNet169, the accuracy ofResNet18
is 4.25% better than that of ResNet50. We think it is the fact
that ResNet18 has fewer parameters and can better fit a small
number of medical samples. Through the guidance of teach-
ers’ model, it can have a significant improvement. The effect
of ResNet50 itself is good, and the space for improvement
is relatively insignificant. The confusion matrix is shown in
Fig. 11.

Conclusion and future work

In this work, we propose cascaded CNN-LSTM to classify
3D ADNI data, and use knowledge distillation to improve
the model accuracy in small samples. Instead of using 3D
network, it performs sequence prediction classification on
2D data. This method can effectively distinguish the classi-
fication situation. Another advantage is that it can process
3D data efficiently as well as reducing the computing pres-
sure on the computer from the data. In future work, we can
consider adding an attention mechanism to the backbone for
feature extraction,which enables themodel to notice changes
in the hippocampus. Thus, more characteristic features can
be extracted to further improve the accuracy of diagnosis.
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